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Pulses of tunable size near a subcritical bifurcation
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Abstract. We show that a nonlinear gradient term can be used to tune the width of pulse-like solutions to
a generalized quintic Ginzburg-Landau equation. We investigate the dynamics of these solutions and show
that weakly turbulent patches can persist for long times. Analogies with turbulent spots in plane Couette
flows are discussed.

PACS. 47.20.-k Hydrodynamic stability – 47.54.+r Pattern selection; pattern formation

1 Introduction

The existence of turbulent patches in otherwise laminar
flows has been puzzling scientists for many years [1–6].
Little is known about these solutions, except that in open
shear flows, they can either appear downstream as an am-
plification of upstream noise [7–9] or be triggered by a
local perturbation of finite amplitude. In this latter case,
experimental work on the plane Couette flow [5,6,10,11]
and pipe flows [12] has revealed a critical amplitude of
perturbation, Ac, for turbulent patches to grow. There ap-
pears to be a critical Reynolds number Rec below which
the flow remains stable, independently of the amplitude
of the localized perturbation chosen to destabilize it. For
Reynolds numbers (Re > Rec) close to this threshold
value, the growth of turbulent spots depends very strongly
on the size of the perturbation. If Re is large, however, a
finite perturbation of exceedingly low amplitude may be
enough to trigger the transition [13]. From a phenomeno-
logical point of view, turbulent spots can be seen as result-
ing from the competition between two coexisting states
[14], a turbulent and a laminar one. In this sense, they are
localized solutions of a bistable system.

Model equations like the quintic subcritical Ginzburg-
Landau equation

∂A

∂t
= µA+ (αr + iαi)

∂2A

∂x2

+ (βr + iβi)|A|
2A+ (γ + iδ)|A|4A, (1)

have been suggested as prototypes for studying the com-
petition between two metastable states of a same system.
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This equation indeed exhibits a saddle-node bifurcation
which occurs for values of the control parameter below
the subcritical bifurcation, thereby leading to the coex-
istence of three branches of solutions, two of which are
linearly stable. Moreover, Thual and Fauve [15] showed
that localized solutions of equation (1) connecting A = 0
back to A = 0 could be stabilized over a range of the con-
trol parameter µ. The existence of these pulses is due to
non-variational effects and can be understood as resulting
from a nonlinear coupling between the phase gradients and
the amplitude of the control parameter A [15]. The exis-
tence of these solutions can also be inferred by consider-
ing equation (1) above as a perturbation of the Nonlinear
Schrödinger equation or of the Ginzburg-Landau equation
with real coefficients (see [16–19] for further detail).

One might view these pulses as being made of two
kinks connecting two stable homogeneous solutions of the
system. Since they exist over a finite range of µ, this con-
trasts with the real case (αi = βi = δ = 0) for which there
is only one value µM of µ where the two homogenous so-
lutions (A = 0 and A 6= 0) can coexist in a stable manner.
This can be seen by considering the potential function
associated with equation (1) with real coefficients. When
µ = µM , the system is at its Maxwell point, i.e. the two ho-
mogeneous solutions have the same energy. When µ 6= µM ,
in one space dimension and in the absence of constrain-
ing boundary conditions, the system generically evolves
towards its state of lower energy, therefore ruling out the
existence of stable localized solutions. In two or higher di-
mensions, this trend can be counterbalanced by surface
tension effects. Unless otherwise specified, our discussion
will be made for one-dimensional systems.

Because they correspond to patches of non-zero |A|
which stably exist on a flat background, the pulses found
by Thual and Fauve are natural candidates to model
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turbulent spots. Parity breaking versions of equation (1)
have been considered in order to analyze noise ampli-
fication due to advection [20] and it was shown that
symmetry-breaking nonlinear gradient terms could mod-
ify the propagation velocity of the pulses, as well as
their shape [21]. More recently, Deissler and Brand [22]
showed that the Thual-Fauve pulses [15] could become
time-dependent and exhibit periodic, quasi-periodic, or
chaotic behaviors. One could then think of modeling a
turbulent patch by taking a Thual-Fauve pulse in a pa-
rameter regime such that the non-zero solution reached
inside the pulse is phase unstable. Due to this instability,
the size of the localized solution would vary in time, and
a crucial question is whether or not the pulse would re-
tain its global shape. Our numerical simulations [23] show
that this is not the case and instead the pulse breaks
into a few pulses, which then recombine or get apart from
one another. We believe that this is due to the fact that
the typical width of each pulse is strongly constrained by
the Ginzburg-Landau parameters. As a consequence, the
model needs to be modified if one wants to account for
large turbulent patches.

In order to describe spiral turbulence [24] in Taylor-
Couette flows, Hayot and Pomeau [25] introduced an in-
tegral term of the form A

∫
|A|2 dx. The latter can be

thought of as renormalizing the control parameter µ and
changing it into an effective one, whose value depends on
the size of the localized solution (i.e. on the width of the
region where |A| 6= 0). This term is justified in the case
of annular flows but turbulent patches may nevertheless
exist in non-periodic domains. The goal of this paper is to
show that solutions of variable size can be stabilized by
means of a local term, namely |∂A/∂x|2A. This term is of
order 5 if one considers the Ginzburg-Landau equation as
an amplitude equation and is also the nonlinear gradient
term of lowest order which does not break parity symme-
try. It is dominant where the amplitude or the phase of A
have large gradients, and, if the real part of its coefficient
has the proper sign, it can be expected to renormalize the
control parameter µ in a way which may stabilize localized
solutions.

In Section 2, we analyze the role of this term in the
case of the real quintic Ginzburg-Landau equation. This
allows us to build an intuition regarding how this new term
leads to the existence of localized solutions for arbitrary
values of µ. In Section 3, we give numerical results which
relate the size of the localized solutions to the coefficient in
front of this new term. In Section 4, we consider localized
solutions for which the non-zero state is phase unstable
and show that one can observe, at least over long periods
of time, turbulent patches on top of a zero (or laminar)
background. Finally, we discuss possible analogies of this
system with turbulent spots observed in a plane Couette
experiment [10,26].

2 Localized solutions to the quintic
Ginzburg-Landau equation with real
coefficients

We are interested in the existence of localized solutions to
the complex Ginzburg-Landau equation with real coeffi-
cients, which reads

∂A

∂t
= µA+ αr

∂2A

∂x2
+ βr|A|

2A+ γ|A|4A+ ζ

∣∣∣∣∂A∂x
∣∣∣∣2A.

(2)

We assume that αr > 0, βr > 0 and γ < 0, which in-
sures the existence of a subcritical bifurcation at µ = 0.
For values of µ between µSN = β2

r/(4γ) and zero, this
equation possess three stationary solutions of the form
A = ±R, where R = 0 or R = R± is one of the non-
negative roots of R(γR4 + βrR

2 + µ) = 0. One can then
expect to find real localized solutions connecting R = 0
to R 6= 0. The existence of such solutions can be inferred
from the phase diagram of the spatial dynamical system
obtained from (2) by setting the temporal derivative of A
equal to zero. We then look for kinks connecting A = 0 to
a state of non-zero amplitude. A pulse would correspond
to a homoclinic solution starting and ending at A = 0, but
the above equation does not posses such solutions. How-
ever, because interactions between kinks are expected to
be exponential, one can construct localized solutions by
juxtaposing two kinks, one connecting A = 0 to A 6= 0,
and another one connecting A 6= 0 back to A = 0 [27].

The spatial dynamical system describing stationary so-
lutions of (2) has five critical points, given by R = 0
and R = ±R±. Two of them (±R−) are centers and
three of them (R = 0 and R = ±R+) are saddles. The
phase diagrams for typical values of µ are sketched in Fig-
ure 1. Only the first quadrant is shown. The others quad-
rants are obtained by symmetry. When ζ = 0, there is
only one value of µ, corresponding to the Maxwell point
µM = 3β2

r/(16γ), for which there exists a heteroclinic con-
nection between R = 0 and R = ±R+ (see Fig. 1b). One
can clearly see in Figure 1c how the heteroclinic orbit
starting at R = −R+ and ending at R = R+ collides
with the stable and unstable manifolds of R = 0 when µ
crosses µM from above.

When ζ 6= 0, the term in ζ|∂A/∂x|2A can be seen as
renormalizing µ by a quantity equal to ζ|∂A/∂x|2, which
has the same sign as ζ. This suggests that an appropri-
ate choice of ζ may lead to the existence of a heteroclinic
connection between R = 0 and R = ±R+, for every µ.
Note that the critical points ±R± as well as their linear
stability are not affected by ζ. When µ < µM , the value of
ζ giving the existence of a heteroclinic connection is pos-
itive, since the actual µ needs to be “increased” towards
µM . Similarly, if µ > µM , ζ must be chosen negative in
order to make a heteroclinic connection possible. Below,
we use phase-space considerations to prove the existence
and uniqueness of this heteroclinic connection when ζ is
varied.
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Fig. 1. Phase diagrams for the spatial dynamical system cor-
responding to the time-independent Ginzburg-Landau equa-
tion with real coefficients. Only the first quadrant is shown.
(a) µ < µM ; (b) µ = µM ; (c) µ > µM .

2.1 Existence and uniqueness of a heteroclinic
connection for every µ

We assume that µ is negative, but larger than µSN =
β2
r/4γ, in order to grant the existence of five fixed points.

When A is real and time-independent, equation (2) can
be written as

dA

dx
= B

(3)

dB

dx
= −

1

αr

[
µA+ βrA

3 + γA5 + ζB2A
]

= −
1

αr

[
f(A) + ζB2A

]
,

where f(A) = µA+ βrA
3 + γA5. We define the “energy”

E =
B2

2
+

∫ A

0

1

αr
f(v) dv.

It can be easily checked that

dE

dx
= −

ζ

αr
B3A.

In other words, the energy is conserved on the solution
curves when ζ = 0. Another way of looking at Figure 1
is to view it as a contour diagram of the energy E in the
first quadrant for three different values of µ (µ < µM ,
µ = µM and µ > µM), when ζ = 0. In each plot, two
level curves play an important role: the level curve E = 0,
which corresponds to the unstable manifold of the origin,
and the level curve E = Eo, which corresponds to the
stable manifold of the fixed point (R+, 0). The equation
of this latter curve is

B2 =
−γ

3αr

(
(R+)2 −A2

)2
(A2 − z2

0),

where

z2
0 = (R−)2 +

√
β2
r − 4γµ

2γ
,

and z2
0 is positive if and only if µ < µM . In other words, the

curve E = Eo crosses the positive A-axis in two different
points when µ < µM , and in only one point when µ > µM ,
as can be seen in Figure 1.

When µ 6= µM and ζ = 0, the unstable manifold of
(0, 0) is, in the first quadrant, above the stable manifold
of (R+, 0) if µ < µM (Fig. 1a), and below the stable man-
ifold of (R+, 0) if µ > µM (Fig. 1c). Our proof for the
existence and unicity of a heteroclinic connection consists
in showing that one can find a value of ζ, positive in the
former case and negative in the latter, for which the sit-
uation is reversed, i.e. such that the unstable manifold of
(0, 0) is below the stable manifold of (R+, 0) if µ < µM ,
and above the stable manifold of (R+, 0) if µ > µM . By
continuity of the solution curves with the parameters, this
means that, for each µ, there is a value ζc of ζ for which the
unstable manifold of (0, 0) coincides with the stable man-
ifold of (R+, 0), i.e. for which a heteroclinic connection
exists. The proof is given in Appendix. We now compute
the first order term of the expansion of ζc as a function of
the difference µ− µM .

2.2 Perturbation of the heteroclinic orbit for µ near
µM and small ζ

When µ = µM , we know that the heteroclinic connec-
tion occurs for ζ = ζc(µM ) = 0. Assuming that ζc(µ) is
smooth, one can compute the first order term of the Tay-
lor expansion of ζ as a function of µ − µM by writing
a solvability condition for the existence of a heteroclinic
orbit when µ ' µM .

When µ = µM , the heteroclinic solution between A =
0 and A = R+ can be found by quadrature and is given
by

A(x)=AM (x)=

 βr
−4γ

3 +Cβr exp
(
−
√
−3/αrγβrx/2

)
1/2

,

where C is an arbitrary constant, corresponding to differ-
ent choices of the origin of the space variable x. We now
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Fig. 2. Plot of the first order approximation of ζc as a function of µ (solid line), together with numerically measured values of
ζc (circles and squares), for αr = βr = 1 and γ = −1 (left) and γ = −2 (right).

assume µ = µM + ε, where ε is small, and ζ = εζ1 +O(ε2).
We look for a solution to equation (2) in the form

A = AM + εA1 +O(ε2),

and obtain, at order ε, the following linear equation for
A1:

LA1 = −AM

(
ζ1

(
dAM

dx

)2

+ 1

)
(4)

where

L(u) =

(
µM + αr

d2

dx2
+ 3βrA

2
M + 5γA4

4

)
u.

The first order correctionA1 to the heteroclinic connection
is bounded but not zero at +∞, since

lim
x→+∞

A1 =
1

ε

[
R+(µ)−R+(µM )

]
=

1

2R+(µM )(βr − 4γµM)1/2
·

Since L is self-adjoint for the usual scalar product, by
multiplying both sides of equation (4) by dAM/dx and
integrating between −∞ and +∞, one gets, assuming that
dA1/dx→ 0 when x goes to ±∞,∫ +∞

−∞

(
ζ1

(
dAM

dx

)3

AM +
dAM

dx
AM

)
dx = 0,

which gives

ζ1 = 1024
γ3

9β4
r

(R+)2,

i.e., with (R+)2 = −3βr/(4γ),

ζc = −
256

3

γ2

β3
r

(µ− µM ) +O
(
(µ− µM )2

)
. (5)

Note that ζc does not depend on αr since this parameter
can be scaled out of the equation without changing the
value of ζ. Figure 2 shows the first order approximation
given by equation (5) together with measured values of ζc
for αr = βr = 1 and two values of γ: γ = −1 (for which
µM = −0.1875 and µSN = −0.25) and γ = −2 (for which
µM = −0.09375 and µSN = −0.125). The value of ζc was
measured numerically using the dynamical systems soft-
ware DSTOOL. The agreement is extremely good, even
for relatively large values of µ− µM .

The above analysis allows us to understand the role of
the nonlinear gradient term: we can tune its coefficient
to create heteroclinic connections between A = 0 and
A = ±R+ for arbitrary values of µ. As a consequence,
long-lived localized solutions corresponding to the juxta-
position of exponentially-interacting symmetric kinks may
be observed. When complex coefficients are taken into ac-
count, these solutions are not only stable, but their size
varies greatly with the coefficient of the nonlinear gradient
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Fig. 3. Localized solutions to the quintic complex Ginzburg-Landau equation (6) with (left) ζ = κ = 0 and (right) ζ = −0.133
and κ = 0.88. Other parameters are αr = 1.2, αi = −1.1, βr = 3.0, βi = 1.0, γ = −2.75 and δ = 1.0.

term. This parameter may then be used to “tune” the
width of these localized objects, as discussed below.

3 Localized solutions of tunable size

Here we give numerical results showing localized solutions
to the quintic complex Ginzburg-Landau equation (with
complex coefficients)

∂A

∂t
= (µ+ iν)A+ (αr + iαi)

∂2A

∂x2

+ (βr + iβi)|A|
2A+ (γ + iδ)|A|4A+ (ζ + iκ)

∣∣∣∣∂A∂x
∣∣∣∣2A.

(6)

We have used a spectral code with periodic boundary con-
ditions. Our simulations were made in boxes of various
sizes in order to check that the width of the localized so-
lutions was independent of the size of the system. The am-
plitude, real part and phase of a Thual-Fauve pulse [15]
are shown in Figure 3, as functions of space. Left plots
correspond to (6) with ζ = κ = 0, and right ones to (6)
with ζ = −0.133 and κ = 0.88. The other parameters are
the same as those of [22], that is αr = 1.2, αi = −1.1,
βr = 3.0, βi = 1.0, γ = −2.75 and δ = 1.0. It is obvious
from this picture that the size of the localized solution
is larger when ζ and κ are not zero. The new solution
has the same characteristic features as the Thual-Fauve
pulses, except that it is wider.

We now discuss how the size of these pulses is affected
by the values of ζ and κ. For this purpose, we use a
scaled Ginzburg-Landau equation, i.e. (6) with αr = 1
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Fig. 4. Typical evolution of the size of the localized solution as a function of κ for fixed values of ζ.

and βr = 1. Figure 4 gives the width of the localized so-
lution as a fuction of κ for fixed values of ζ. As predicted,
the size of the pulse is completely determined by the value
of κ (all other parameters being fixed) and can be tuned
by changing this parameter. Stable solutions exist in a fi-
nite range of κ’s, denoted [κ−, κ+]. If κ is outside this
interval, any localized solution evolves towards a homo-
geneous state characterized by |A| = constant. When κ
is between κ− and κ+, localized solutions can be viewed
as “patches of non-zero |A|” within a laminar region where
A = 0. Moreover, the order parameter A behaves like a
plane wave in the region where A 6= 0. These solutions of
(6) are of the form

A = R exp[i(qx+ ω(q)t)]

where {
ω(q) = ν − αiq2 + (βi + κq2)R2 + δR4

0 = µ− αrq2 + (βr + ζq2)R2 + γR4 . (7)

When κ is increased towards κ+, the plane wave solution
reached within the pulse takes over A = 0 and spreads
over the whole box. When κ is decreased towards κ−,
this solution becomes phase unstable [28,29] and the pulse
eventually loses stability. The system then converges to-
wards another plane wave of smaller wave number, which
is phase (or Eckhaus [30]) stable.

The linear stability of a plane wave solution (7) can be
investigated by computing its phase diffusion (or Cross-
Newell [31]) equation. It reads

∂θ

∂t
= ω(q) +E

∂2θ

∂x2
+ h.o.t.

where ω(q) is given in (7),

E =
2αrq

2

R2

αr − ζR2

2γR2 + βr + ζq2
+ αr (8)

+
βi + 2δR2 + κq2

βr + 2γR2 + ζq2

[
2q2

R2

αr − ζR2

2γR2 + βr + ζq2

×

[
κR2 + (αr − ζR

2)
βi + 2δR2 + κq2

βr + 2γR2 + ζq2

]
+ αi

]
,

θ is the phase of the order parameter A, and h.o.t stands
for higher order terms. Plane waves are unstable when the
“diffusion coefficient” E is negative. Our numerics shows
that the wave number selected by the pulse becomes Eck-
haus unstable when κ is decreased towards κ−. Moreover,
there exists a range of values of κ for which the pulse,
although phase unstable, remains localized for very long
periods of time. Traveling holes [32], which are deep and
narrow amplitude depressions, are then seen to propagate
within the pulse, leading to a complex dynamical behavior
which we discuss below.

4 Dynamical behaviors

The phase instability of the solution reached within the
pulse acts as a source of noise, which makes the size of
the pulse time-dependent. In the absence of the nonlin-
ear gradient term |∂A/∂x|2A, Deissler and Brand [22]
had shown that the envelope of the pulse could be made
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Fig. 5. Spatio-temporal diagram showing the amplitude (|A|)
of a localized solution to (6) with a time-dependent envelope.
Traveling holes are clearly seen to propagate within the pulse.
The parameters used to generate this picture are αr = 1, αi =
−11/3, βr = 1, βi = 1/3, γ = −2.75/9, δ = 1/9, ζ = −14/9
and κ = −0.8. The box length (horizontal axis) is 400 units
long and the vertical axis corresponds to 400 units of time.
Time goes downward.

time-periodic, quasi-periodic or even chaotic by an appro-
priate choice of αr. Here, because the nonlinear gradient
term can stabilize pulses of rather large size, complicated
spatio-temporal dynamics can take place inside the pulse.
As shown in Figure 5, traveling holes [32] are created near
the center of the pulse, propagate towards the edges, and
at the same time the width of the pulse shows a strong
time-dependence. Such solutions persist over extremely
long periods of time, which are at least a few hundred
times as long as the characteristic time scale given by the
frequency ω of the plane wave. Figure 6 shows the real
part of a “turbulent pulse”, where the two time scales can
be seen. The dark and light stripes which, at the center
of the pulse, are almost parallel to the horizontal axis cor-
respond to oscillations of the solution at the frequency ω.
The time-scale at which the width of the pulse evolves is
about 20 times as large. The whole picture describes the
solution over 100 units of time, whereas Figure 5 covers
400 units of time. The typical length of each of our runs
was around 2000 units of time.

Fig. 6. Spatio-temporal diagram showing the real part of a
localized solution with a time-dependent envelope. The two
time scales corresponding to the period of the plane wave and
to the modulation of the envelope of the pulse are clearly visi-
ble. The parameters used to generate this picture are αr = 1,
αi = −11/3, βr = 1, βi = 1/3, γ = −2.75/9, δ = 1/9,
ζ = −14/9 and κ = −0.8. The box length (horizontal axis)
is 400 units long and the vertical axis corresponds to 100 units
of time. Time goes downward.

The above pulses can be seen as localized patches of
turbulence, moving in a homogeneous (i.e. laminar) back-
ground. It is very likely that the two-dimensional version
of the Ginzburg-Landau equation (6) will possess local-
ized solutions similar to our one-dimensional pulses, and
analogies can be drawn between these solutions and tur-
bulent spots seen in shear flows, such as the plane Cou-
ette flow analyzed in [5,6,10,26]. This flow has no mean
advection, is linearly stable, and may sustain turbulent
spots. The latter possess a characteristic size which for
instance varies by as much as 40% when the Reynolds
number, which is the experimental control parameter, is
changed from 320 to 380 [33]. These spots may interact if
two of them happen to get close enough to one-another.
In this case, they coalesce and create a large spot, whose
size eventually relaxes to that of a single spot [34]. As a
test for our model, we chose an initial condition with two
gaussian shapes. In the absence of the other pulse, each of
these profiles would evolve toward a single pulse solution,
similar to those described above. As shown in Figure 7, the
two localized perturbations first coalesce into a large pulse
(Fig. 7, left plot), which then relaxes towards a single lo-
calized solution (Fig. 7, right plot), whose size is the same
as if we had started with a single gaussian perturbation.
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Fig. 7. Spatio-temporal diagrams showing the evolution of two localized perturbations. Left: in the initial stage, the two
localized solutions expand, collide and unite into a single pulse (box length = 200 units of space; the vertical axis corresponds
to 25 units of time; time goes downward). Right: the pulse relaxes to its characteristic size (box length = 200 units of space;
the vertical axis corresponds to 400 units of time; time goes downward).

5 Conclusions

We have shown that a nonlinear gradient term can sta-
bilize localized solutions of tunable size, including weakly
turbulent ones. This term does not break the parity in-
variance of the Ginzburg-Landau equation and is of same
order as the saturating quintic term |A|4A. Since its pres-
ence has significant consequences on the width of the lo-
calized solutions, it should not be omitted in the descrip-
tion of subcritical instabilities. Such a term would indeed
generically appear in Ginzburg-Landau equations describ-
ing inverted bifurcations in spatially extended systems, or
associated with model equations like the complex quintic
Swift-Hohenberg (SH) equation. In the case of a real SH
equation, the parameter κ would be zero and localized so-
lutions would be described by equation (2). The fact that
ζ can always be chosen to ensure the existence of a hete-
roclinic connection between A = 0 and A 6= 0 may explain
the localized solutions observed by Sakagushi and Brand
[35] in the quintic SH equation. Finally, the generalized
Ginzburg-Landau equation (6) provides a good model for
the description of turbulent patches in laminar domains,
and we believe that its extension to two space dimensions
will give a qualitatively good description of experimentally
observed turbulent spots.
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Appendix: Proof of the existence and unique-
ness of a heteroclinic connection for ζ = ζc(µ)

The proof relies on two preliminary results, one ensur-
ing that each solution curve in the first quadrant can be
thought of as the graph of a function B = hζ(A), the other
one showing that solution curves going through the same
point but for different values of ζ cross only once. Each of
these properties is discussed below.

1. Proposition 1: Consider the solution curves of Sys-
tem (3) in the first quadrant (i.e. A, B ≥ 0). Each
curve can be seen as the graph of a function B = hζ(A).
Indeed, if a solution curve had more than one inter-
section point with a line A = C = constant in the
first quadrant, there would, by continuity, exist a point
where dA/dx = B = 0 and B 6= 0, which is impossible.
As a consequence, we will, without loss of generality,
restrict our analysis to the first quadrant and consider
B as a function of A on any solution curve.

2. Proposition 2: Two solution curves which correspond,
in the first quadrant, to different values of ζ and have
the same initial condition cross only once, at the initial
point.
Consider two distinct solution curves B = hζ1(A)
and B = hζ2 , ζ1 6= ζ2, which both go through the
point with coordinates (A0, B0). Without loss of gen-
erality, we can assume that hζ1 is above hζ2 for ev-
ery A near A0, i.e. there exists A1 > A0 such that
hζ1(A) > hζ2(A) for every A in (A0, A1]. Then, using

dE

dA
=
dE

dx

dx

dA
= −

ζ

αr
B2A,
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Fig. 8. Sketch of the phase portrait of system (3) when µ <
µM .

and the definition of E, the energy difference between
the two curves can be written in two ways:

E (A, hζ1(A)) −E (A, hζ2(A))

=
1

2
hζ1(A)2 −

1

2
hζ2(A)2

=

∫ A

A0

−
ζ1

αr
hζ1(A)

2
A dA−

∫ A

A0

−
ζ2

αr
hζ2(A)

2
A dA.

Thus, for A0 ≤ A ≤ A1,

1

αr

∫ A

A0

[
ζ2hζ2(A)2 − ζ1hζ1(A)2

]
dA > 0.

Since the integrand has a constant sign between A0

and A1, this implies

ζ2hζ2(A)2 > ζ1hζ1(A)2 for A0 < A < A1,

i.e.

ζ2 > ζ1
hζ1(A)2

hζ2(A)2
for A0 < A < A1.

Since hζ1 is above hζ2 , we have ζ2 > ζ1. As a con-
sequence, the two curves cannot cross again because
if they were, there would be a point Ã0 and a point
Ã1 such that hζ1(Ã0) = hζ2(Ã1) and hζ2(A) > hζ1(A)

for Ã0 < A < Ã1. By repeating the above argument,
one would then have ζ1 > ζ2, which contradicts the
previous result.
Therefore, two solution curves which correspond, in
the first quadrant, to different values of ζ and have
the same initial condition cross only once, at the initial
point.

We now consider an arbitrary value of µ, µSN < µ < 0,
and show that there is an unique value of ζ for which
a heteroclinic connection exists. Let wu(A, ζ) denote the
unstable manifold of the origin in the first quadrant, and
ws(A, ζ) the stable manifold of (R+, 0), also in the first
quadrant.

1. If µ < µM , wu(A, 0) is above ws(A, 0) when ζ = 0
(see Fig. 8). Let us consider positive values of ζ. Since
dE/dx < 0 on solution curves, wu(A, ζ) stays below

wu(A, 0). Moreover, wu(A, ζ) cannot cross the A-axis
at a value A ≤ R− since one must have

dB

dx
= −

γ

αr

(
A2 − (R+)2

) (
A2 − (R−)2

)
A < 0

at the crossing point, which does not occur if 0 < A <
R−. Thus wu(A, ζ) crosses the line A = R− at a point
with coordinates (R−, Bu(ζ)), where Bu(ζ) > 0. Since
for any ζ1, ζ2 > 0, wu(A, ζ1) and wu(A, ζ2) cross at
the origin, Proposition 2 above shows that Bu(ζ) is a
monotonic decreasing function of ζ.
Now consider ws(A, ζ). When ζ = 0, it crosses the line
A = R− at a point with coordinates (R−, Bs(0)), with
Bs(0) < Bu(0). When ζ 6= 0, because for any ζ1, ζ2 >
0, ws(A, ζ1) and ws(A, ζ2) cross at (R+, 0), Bs(ζ) is a
monotonic increasing function of ζ. We want to show
that there is a value of ζ for which Bs(ζ) > Bu(ζ).
The upper branch of the level curve E = Eo is the
stable manifold ws(A, 0), and, as explained before,
ws(A, ζ) remains above this curve when ζ > 0. On
ws(A, ζ),

dB

dx
= −

γ

αr
A
(
A2 − (R+)2

) (
A2 − (R−)2

)
−
ζ

αr
B2A,with B = ws(A, ζ).

Since

−
γ

αr
A
(
A2 − (R+)2

) (
A2 − (R−)2

)
≤ 0

for R− ≤ A ≤ R+,

and since ws(A, 0) < ws(A, ζ) and ζ > 0, we have

−
γ

αr
A
(
A2 − (R+)2

) (
A2 − (R−)2

)
−

ζ

αr
[ws(A, ζ)]2A

< −
ζA

αr
ws(A, 0)ws(A, ζ) for R− ≤ A ≤ R+.

Therefore, for every ζ > 0,

dws(A, ζ)

dA
=

1

ws(A, ζ)

dws(A, ζ)

dx
< −

ζ

αr
ws(A, 0)A,

for R− ≤ A ≤ R+. Let X = R+ − A. With this new
variable, the above equation reads

dw̃s(X, ζ)

dX
>
ζ

αr
X(2R+−X)

√
−

γ

3αr
[(R+−X)2−z2

0]

= ζg(X) ≥ 0,

for z0 ≤ R+ − X ≤ R+, and where we have de-
fined w̃s(X, ζ) = ws(A, ζ). To write this last inequality,
we have used the expression of ws(A, 0) as the upper
branch of the level curve E = Eo, whose equation is
given in Section 2.1. Since R− > z0 > 0, we get

w̃s(R+ −R−, ζ) = ws(R−, ζ)

= Bs(ζ) ≥ ζ

∫ R+−R−

0

g(X) dX = Cζ,
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Fig. 9. Sketch of the phase portrait of system (3) when µ >
µM .

where C is a strictly positive constant. By choosing
ζ large enough, one can then insure that Bs(ζ) >
Bu(0) > Bu(ζ), i.e. that

Bs(ζ) > Bu(ζ).

By continuity of the solution with respect to changes
in the parameters, there must be a value ζc for which
Bu(ζ) = Bs(ζ), i.e. for which there is a heteroclinic
orbit. Moreover, this value is unique because Bu and
Bs are monotonic functions of ζ which vary in opposite
directions.

2. If µ > µM , wu(A, 0) is below ws(A, 0) when ζ = 0.
Let us consider negative values of ζ. Since dE/dx >
0 on solution curves, ws(A, ζ) stays below ws(A, 0),
i.e. Bs(ζ) < Bs(0) (see Fig. 9). The points Bs(ζ) and
Bu(ζ) are defined as before. From the level curves of
E (see Fig. 1), we know that Bs(0) > Bu(0).
We want to show that for values of |ζ| large enough,
the situation is reversed, i.e. Bu(ζ) > Bs(ζ). For 0 ≤
A ≤ R−,

dB

dx
= −

γ

αr
A
(
A2 − (R+)2

) (
A2 − (R−)2

)
−

ζ

αr
B2A

≥ −
ζ

αr
B2A,

and for wu(A, ζ)

dwu(A, ζ)

dA
≥ −

ζ

αr
wu(A, ζ)A ≥ −

ζ

αr
wu(A, 0)A,

since wu(A, ζ) is above wu(A, 0). Therefore, by inte-
grating from A = 0 to A = R−,

Bu(ζ) = wu(R−, ζ) ≥ −
ζ

αr

∫ R−

0

wu(A, 0) A dA = −ζC∗,

where C∗ is a strictly positive constant. By choosing
|ζ| = −ζ large enough, one gets

Bu(ζ) > Bs(0) > Bs(ζ).

Again, by continuity of the solution curves with re-
spect to the parameters, there is a value ζc for which
Bu(ζc) = Bs(ζc), i.e. for which a heteroclinic connec-
tion exists. Since Bu andBs are respectively increasing
and decreasing monotonically when |ζ| is increased, the
value ζc is unique.

Therefore, for every µ, there is a unique value ζc for
which a heteroclinic connection exists. Moreover, if µ <
µM , ζc is strictly positive; if µ > µM , ζc is strictly negative.
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